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• What is an algorithm? - a list of instructions given to a 

computer in order to solve a problem

• The time complexity of an algorithm is a measure of how 
the number of operations grows with respect to input size

• Example:

1 2 1 3 4 0 3 246086242

a list of n numbers task: double each number

input size: n

algorithm time complexity: O(n)
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NP hardness
• If a problem is NP hard, then there is 

no known efficient algorithm that can 
solve it

• Is it possible for an efficient algorithm 
to solve an NP hard problem?

This is one of the biggest open questions in computing science

http://www.claymath.org/
millennium-problems $1,000,000 prize
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Stable matchings

• A stable matching is a matching with no blocking pairs

• When there are no ties in preference lists we can find a 
stable matching using an efficient algorithm. Also all 
stable matchings are the same size.

• When there are ties in preference lists we can find a 
stable matching using an efficient algorithm - but stable 
matchings are different sizes

Gives us new questions
Two Algorithms for the Student Project Allocation Problem; 
Journal of Discrete Algorithms; 2007; Abraham, Irving, Manlove
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can we do? 

• Build an exhaustive search algorithm

• Find an efficient algorithm for an NP-hard problem

• Integer programming (uses                algorithms)

• Approximation algorithms (poly time)
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• Uses software that can optimise or solve a problem when it is 
given an Integer Programming model as input

• Uses exponential-time algorithms

• But this is only in a worst-case scenario. Integer Programming 
algorithms are optimised to work quickly in many cases

• An Integer programming model has been built to find a 
maximum stable matching
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• A trade off negative: aren’t solving to optimality

positive: efficient algorithm
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Creating approximation 
algorithm

• An approximation algorithm exists for a simpler problem 
where lecturers aren’t involved

• Can I just convert my problem and use this? No!

• Had to create a new 3/2 approximation algorithm

• Lecturers added a lot of complications

• Proved that this algorithm is efficient (polynomial-time) 
and correct (results in a stable matching at least 2/3 the 
size of a maximum stable matching)

Linear Time Local Approximation 
Algorithm for Maximum Stable Marriage; 
Algorithms; 2013; Kiraly
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Students (who are not already assigned) apply in turn to their 
favourite project on their preference list. Assume student s applies to 
project p.

• if p and l (the lecturer of p) are undersubscribed then we add (s,p) to 
our matching

• if either p or l are full then we need to check whether (s,p) should 
replace an existing pair in the matching

• if there is no chance for s to assign to p then s will remove p from 
their preference list (and will now apply to their next favourite)

• Students iterate twice through their preference list
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How good is the 
approximation algorithm?

• Experiments! 100s of thousands of instances with varying 
parameters. Ran on approximation algorithm and integer program.

• Correctness testing

• Does the approximation algorithm stick to 2/3 the size of optimal? 
Or do we get close to maximum?

• Somewhere in between, but closer to maximum

• Much faster than using the integer program

• So is it worth using?
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• some or all get a better outcome
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f.cooper.1@research.gla.ac.uk 
http://www.dcs.gla.ac.uk/~francesc/
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