

Regret-equality in Stable Marriage

Frances Cooper

Joint work with: Prof David Manlove

Outline

- Matching problems
- Fairness
- Finding fair stable matchings
- Experiments
- Future work

Matching Problems

- Assign one set of entities to another set of entities
- Based on preferences and capacities

Rank

Stable Marriage

Cost: $c_U(M) = 10$, $c_W(M) = 10$

Degree: $d_U(M) = 4$, $d_W(M) = 4$

Women Men Blocking pair W₁, W₂, W₃, W₄ m₄, m₃, m₂, m₁ m_1 W₁ W2, W1, W4, W3 m₃, m₄, m₁, m₂ m_2 **W**2 W3, <u>W4</u>, W1, W2 m_3 **W**3 m₂, m₁, m₄, m₃ W4, W3, W2, W1 m₁, m₂, m₃, m₄ **W**4

A stable matching is a matching with no blocking pairs

Stable Marriage

- A stable matching is a matching with no blocking pairs
- Many stable matchings per instance
- We can find a stable matching in linear time using the man-oriented or woman-oriented Gale-Shapley Algorithm. O(m) time where m is total length of preference lists
- Man-oriented Gale-Shapley Algorithm: finds a manoptimal (woman-pessimal) stable matching (and vice versa)

Fairness

 Want to find a stable matching that provides some kind of equality between men and women

 Several different fairness measures

Fairness measures

Among all stable matchings, find the stable matching that...

Cost: $c_U(M)$, $c_W(M)$ Degree: $d_U(M)$, $d_W(M)$

Minimises the maximum

Minimises the difference

Minimises the sum

balanced score

Balanced stable matching NP-hard

sex-equal score

Sex-equal stable matching NP-hard

egalitarian cost

Egalitarian stable matching Poly

degree

Minimum-regret stable matching Poly

regret-equal score

* Regret-equal stable matching ?

regret sum score

* Min-regret sum stable matching ?

Fairness measures (degree based)

10 stable matchings for this instance

```
m<sub>1</sub>: W<sub>1</sub>, W<sub>2</sub>, W<sub>3</sub>, W<sub>4</sub>
                                                                     W<sub>1</sub>: m<sub>4</sub>, m<sub>3</sub>, m<sub>2</sub>, m<sub>1</sub>
                                                                     w<sub>2</sub>: m<sub>3</sub>, m<sub>4</sub>, m<sub>2</sub>, m<sub>1</sub>
m<sub>2</sub>: W<sub>2</sub>, W<sub>1</sub>, W<sub>4</sub>, W<sub>3</sub>
m<sub>3</sub>: w<sub>3</sub>, w<sub>4</sub>, w<sub>1</sub>, w<sub>2</sub>
                                                                     W3: m2, m1, m4, m3
M4: W4, W3, W2, W1
                                                                     W4: m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub>, m<sub>4</sub>
m<sub>1</sub>: W<sub>1</sub>, W<sub>2</sub>, <u>W<sub>3</sub></u>, W<sub>4</sub>
                                                                     W<sub>1</sub>: M<sub>4</sub>, M<sub>3</sub>, M<sub>2</sub>, M<sub>1</sub>
m<sub>2</sub>: W<sub>2</sub>, W<sub>1</sub>, W<sub>4</sub>, W<sub>3</sub>
                                                                     w<sub>2</sub>: m<sub>3</sub>, m<sub>4</sub>, m<sub>2</sub>, m<sub>1</sub>
m<sub>3</sub>: w<sub>3</sub>, w<sub>4</sub>, w<sub>1</sub>, w<sub>2</sub>
                                                                      W3: m2, m1, m4, m3
m4: W4, W3, <u>W2,</u> W1
                                                                      W4: m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub>, m<sub>4</sub>
m<sub>1</sub>: W<sub>1</sub>, W<sub>2</sub>, W<sub>3</sub>, W<sub>4</sub>
                                                                     W<sub>1</sub>: m<sub>4</sub>, m<sub>3</sub>, m<sub>2</sub>, m<sub>1</sub>
                                                                      w<sub>2</sub>: m<sub>3</sub>, m<sub>4</sub>, m<sub>2</sub>, m<sub>1</sub>
m<sub>2</sub>: <u>W<sub>2</sub>, W<sub>1</sub>, W<sub>4</sub>, W<sub>3</sub></u>
                                                                      W3: m2, m1, m4, m3
m<sub>3</sub>: w<sub>3</sub>, w<sub>4</sub>, w<sub>1</sub>, w<sub>2</sub>
                                                                      w4: m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub>, m<sub>4</sub>
m4: <u>W</u>4, W3, W2, W1
```

Min-regret & Regret-equal

Degree: 3

Regret-equality score: 0

Min-regret sum score: 6

Min-regret & Min-regret sum

Degree: 3

Regret-equality score: 1

Min-regret sum score: 5

Min-regret sum

Degree: 4

Regret-equality score: 3

Min-regret sum score: 5

Over all stable matchings:

Minimum degree = 3

Minimum regret-equality score = 0

Minimum regret sum score = 5

Finding a Regret-Equal Stable Matching

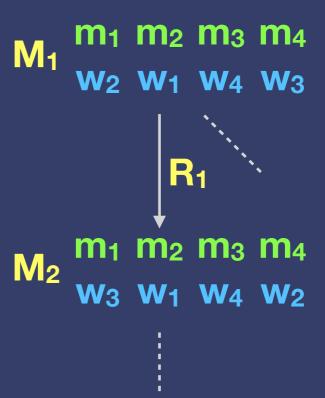
Rotations

 Rotation - series of man-woman pairs that take us from one stable matching to another when permuted

Can only eliminate exposed rotations

$$R_2 \begin{array}{c} \mathbf{m_1} \ \mathbf{m_2} \\ \mathbf{w_1} \ \mathbf{w_2} \end{array}$$

- O(n²) algorithm to find all rotations
- Rotations form a structure to allow enumeration of all stable matchings. All rotation makes some men worse off and some women better off



Algorithm

- 1. Find the man-optimal stable matching Mo
 - Each man has their best partner in any stable matching. Say $d_U(M_0) = 2$ and $d_W(M_0) = 5$ $d(M_0) = (2, 5)$
 - Then, a regret equal stable matching must exist within the following degrees pairs:

```
r-e score: 3 (2, 5)

r-e score: 2 (2, 4) (3, 5)

r-e score: 1 (2, 3) (3, 4) (4, 5)

r-e score: 0 (2, 2) (3, 3) (4, 4) (5, 5)

r-e score: 1 (2, 1) (3, 2) (4, 3) (5, 4) (6, 5)

r-e score: 2 (3, 1) (4, 2) (5, 3) (6, 4) (7, 5)
```

why are these the only

Algorithm

- 2. If $d_{U}(M_{0}) >= d_{W}(M_{0})$ then exit with M_{0}
- 3. For each man m and for each column c:
 - 1. rotate m down to c (if possible)
 - rotate women down column c who have worst rank

```
r-e score: 3 (2, 5)

r-e score: 2 (2, 4) (3, 5)

r-e score: 1 (2, 3) (3, 4) (4, 5)

r-e score: 0 (2, 2) (3, 3) (4, 4) (5, 5)

r-e score: 1 (2, 1) (3, 2) (4, 3) (5, 4) (6, 5)

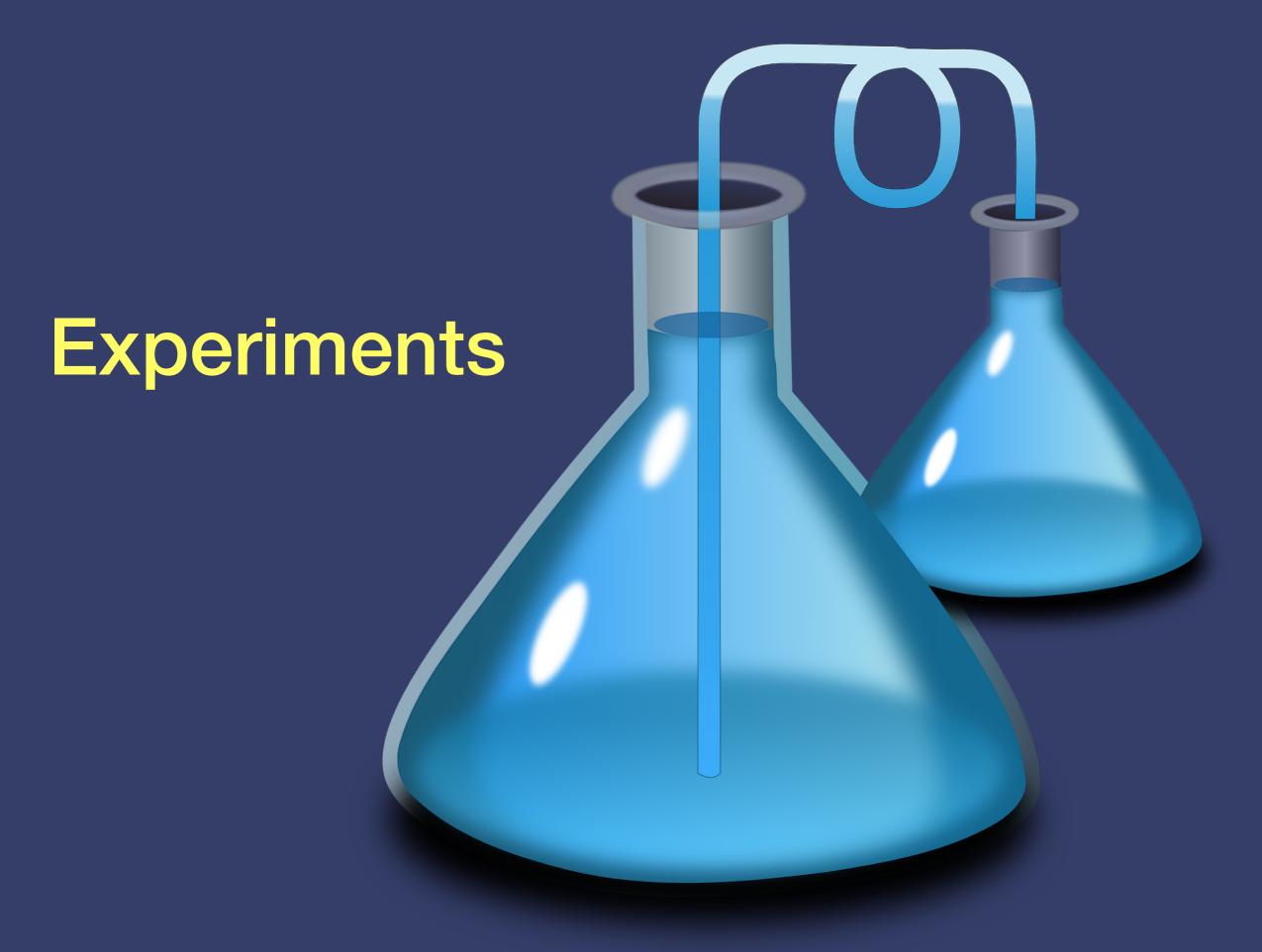
r-e score: 2 (3, 1) (4, 2) (5, 3) (6, 4) (7, 5)
```

Time complexity

- Find man-optimal stable matching & all rotations O(n²)
- For each man O(n)

2 * man-optimal difference

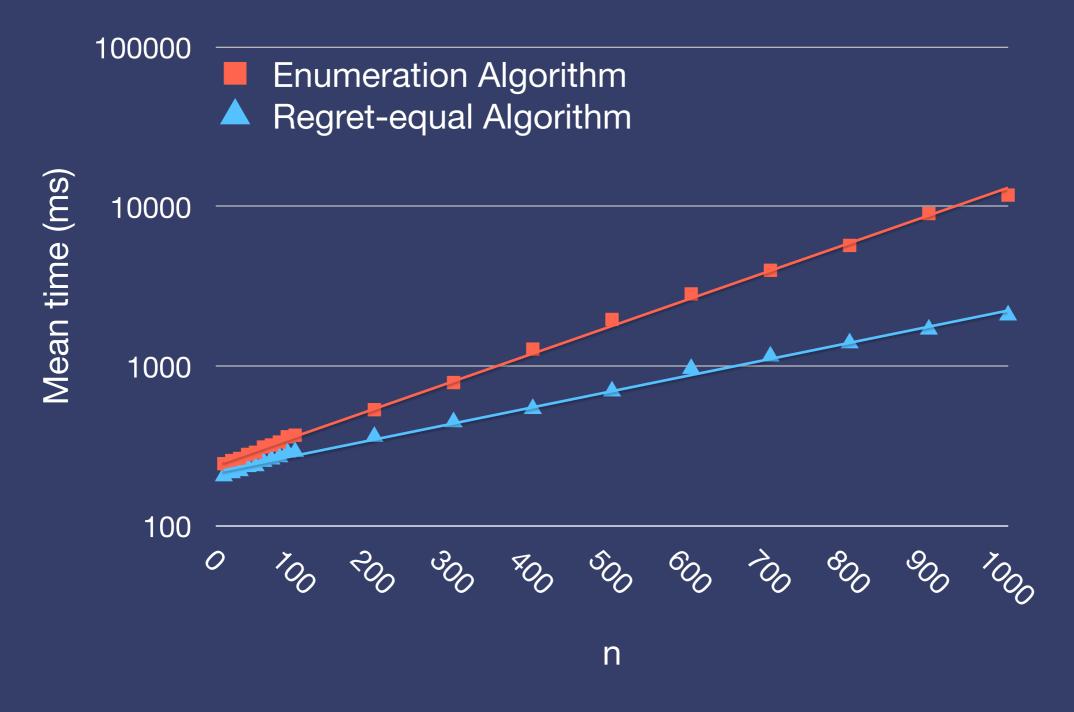
- For each column $O(2 * |d_U(M_0) d_W(M_0)|) = O(c)$
 - Rotate man down and women down O(n²)



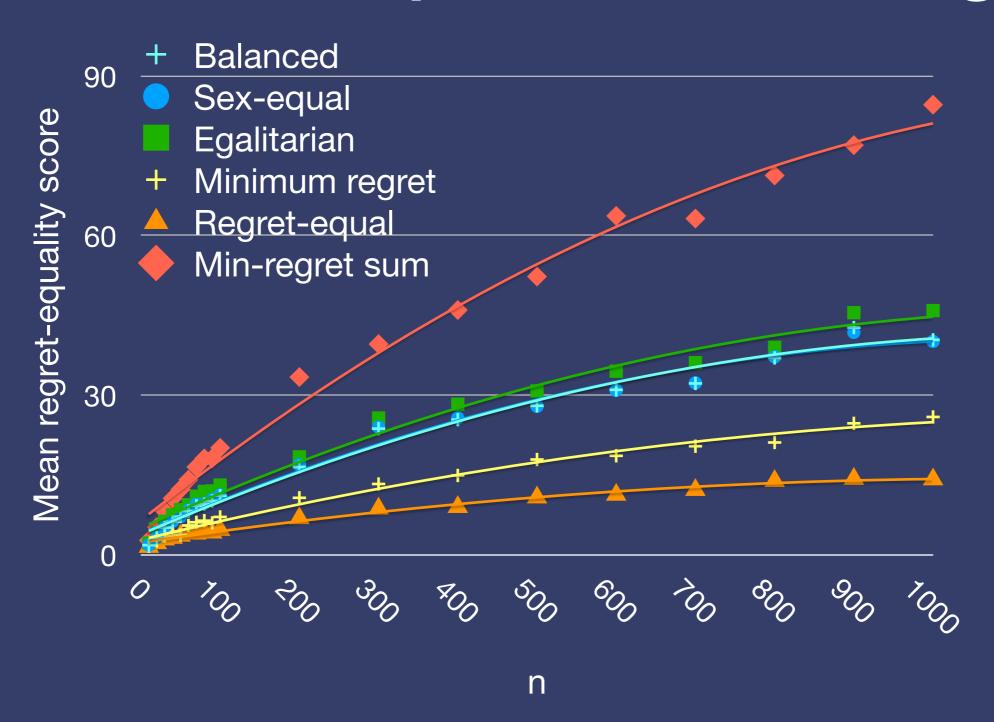
Methodology

- Performance of the Regret-equal Algorithm compared to an Enumeration algorithm (exponential in worst case)
- Instances size {10, 20, ..., 100, 200, ..., 1000}, complete preference lists, 500 instance per size.
- looked at properties over several types of optimal stable matching (balanced, sexequal, egalitarian, minimum regret, regret-equal, min-regret sum)
- Java, Python, Bash, GNU parallel
- Correctness
 - all matchings found were stable
 - Regret-equality scores matched
 - CPLEX up to size n = 50 for the enumeration algorithm

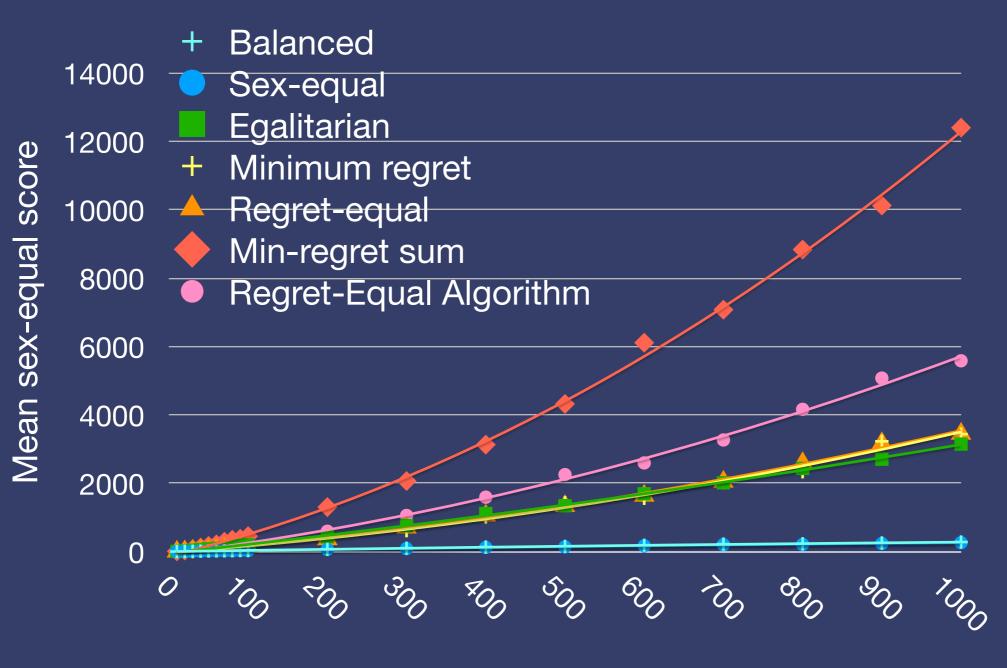
Time taken



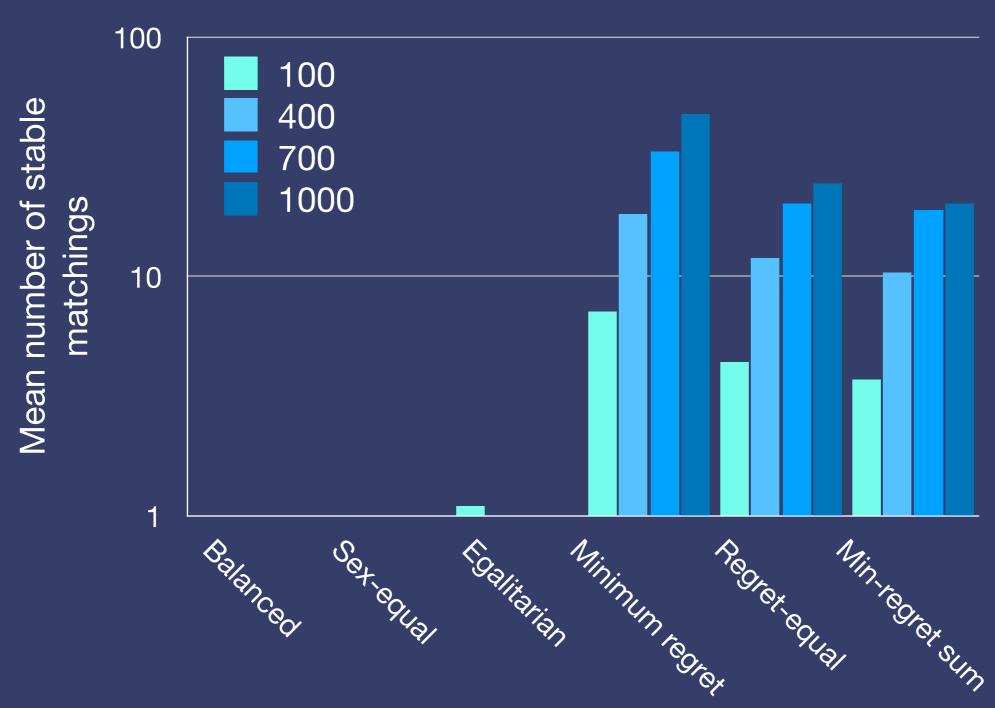
Regret-equality score for different optimal matchings



Sex-equal score for different optimal matchings



Frequency of different optimal stable matchings



Future Work

- Improving the O(n³c) Regret-equal Algorithm, where $c = |d_U(M_0)|$ $d_W(M_0)|$
- Grouping women e.g. women are workers and men are jobs to assign to workers.
 - Woman optimal stable matching would naturally satisfy 'balanced', 'min-regret', 'egalitarian' and 'min-regret sum' criteria
 - Can find a 'regret-equal' stable matching in O(n⁴) time
 - Open problem for 'sex-equality' -> grouped-womenequality

Thank you

Summary

- Matching problems
- Fairness
- Finding fair stable matchings
- Experiments
- Future work: finding improved algorithms

f.cooper.1@research.gla.ac.uk http://fmcooper.github.io

Engineering and Physical Sciences Research Council EPSRC Doctoral Training Account