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• Assign one set of entities 
to another set of entities

• Based on preferences and 
capacities
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• Many stable matchings 
per instance 

• Want to find a stable 
matching that provides 
some kind of equality 
between men and 
women

• Several different fairness 
measures
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Using O(n5log n) 
Irving, Gusfield and 
Leather Approach

An efficient algorithm for the 
“optimal” stable marriage; Journal 
of the ACM; 1987; Irving, 
Gusfield, Leather
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Rotations
• Rotation - series of man-woman pairs that take us from 

one stable matching to another when permuted
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R1

• O(n2) algorithm to find all rotations
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Rotation profile

• Profile of a rotation is the change in profile of the matching if it is 
eliminated. 

• p = <p1, p2, … pn>                                       E.g. p = <2, -1, 0, -1>

Rotation weight

• convert rotation profiles to a single exponential number 

• w(p) =  p1 * nn-1 + p2 * nn-2 + … + pn                  E.g. w(p) = 111

If a rotation has a positive weight then we want to eliminate it if 
possible as it helps us find a rank-maximal matching.
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• The set of stable matchings are in 1-1 
correspondence with the closed subsets of the poset

• Want: Max weight closed subset of the rotation poset

R1 R2

R3 R4

R5 R5

• Displays order in which rotations can be eliminated
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• Build a flow network based on the rotation poset

• The max flow relates to the max closed subset

• Use a min-cut max-flow algorithm to find max flow

• Sleator-Tarjan max-flow algorithm O(n^5 logn)

can be improved - 
we’ll look at this later
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1. List rotations

2. Build rotation poset

3. Build a flow network

4. Find a minimum cut

5. Maximum closed subset of the rotation poset

O(n5log n) using Irving, Gusfield and Leather approach
An efficient algorithm for the 
“optimal” stable marriage; Journal 
of the ACM; 1987; Irving, 
Gusfield, Leather
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Problem

!14

Weights are exponentially large:

• Calculations may cause overflow / inaccuracies for 
primitive types

• Memory issues for types that can store arbitrarily 
large numbers
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• We present a vector-based combinatorial approach - no 
need to use exponential weights

• Why does this help?  

• distribution of rotation profiles are non uniform

• vectors can be compressed

<1, 4, 0, 0, -2, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0 >

<(0,1), (1,4), (4,-2), (11,-3)>
save the index and value of non zero elements (lossless)
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• Flow network

• Vector-based capacities and flows

• E.g. <p1, p2, … pn>

• We don’t convert to an exponential

• adds complications

• Had to define our own arithmetic over these vectors
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1. Eliminating the max profile closed subset of the rotation poset finds 
us the rank-maximal stable matching

2. Correspondence between high-weight and vector-based flows and 
capacities

3. Proved Max Flow-Min Cut Theorem extends to vector-based setting

4. Proved could adapt the Sleator-Tarjan Max-Flow algorithm to use 
vector capacities and flows

Can find a rank-maximal stable matching in O(n5 log n) using vectors - 
matches the exponential approach (but with added bonus of vector 
compression)
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Generous stable matching

!21

• We want to minimise the reverse profile

• Same as maximising the reverse profile where 
each element is negated!

• If p = <p1, p2, … pn>, then p’ = <-pn, -pn-1,…, -p1>
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• We want to minimise the reverse profile

• Same as maximising the reverse profile where 
each element is negated!

• If p = <p1, p2, … pn>, then p’ = <-pn, -pn-1,…, -p1>

• Minimum-regret stable matching - minimises degree 
of the matching - O(n2)

Generous stable matching can be found in O(n2d3 log n) 
time - competitive when d is small d is degree of the 

minimum-regret 
stable matching

Three Fast Algorithms for Four 
Problems in Stable Marriage; Siam 
Journal of Computing; 1987; Gusfield
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• Instances size {10, 20, …, 100, 200, …, 1000}, complete preference 
lists, 1000 instance per size.

• looked at properties over several types of optimal stable matching 
(rank-maximal, generous, median, egalitarian and sex-equal)

• GS algorithm twice + digraph                      all stable matchings

• Java, Python, Bash, GNU parallel

• Correctness 

• all stable matchings found were stable

• CPLEX up to size n = 60 for the number of stable matchings



Frances Cooper!24

Average number of first choices



Frances Cooper!24

Av
er

ag
e 

nu
m

be
r o

f fi
rs

t 
ch

oi
ce

s

0

20

40

60

80

100

120

140

160

n

0 100

200

300

400

500

600

700

800

900
1000

Rank-maximal
Generous

Average number of first choices



Frances Cooper!25

Average degree



Frances Cooper!25

Av
er

ag
e 

de
gr

ee

0

125

250

375

500

625

750

875

1000

n

0 100

200

300

400

500

600

700

800

900
1000

Rank-maximal
Generous

Average degree



Frances Cooper!26

Sex-equal score



Frances Cooper!26

Se
x-

eq
ua

l s
co

re

1

10

100

1000

10000

100000

1000000

n

10 100

1000
Sex-equal
Rank-maximal
Generous

Sex-equal score



Frances Cooper

Future Work

!27



Frances Cooper

Future Work

!27

• Adapt Orlin’s Max Flow algorithm Max Flows in O(nm) Time, or 
Better; Association for Computing 
Machinery; 2013; Orlin



Frances Cooper

Future Work

!27

• Adapt Orlin’s Max Flow algorithm 

• Would get O(n5)

Max Flows in O(nm) Time, or 
Better; Association for Computing 
Machinery; 2013; Orlin

improvement 
automatically available in 

the exponential case



Frances Cooper

Future Work

!27

• Adapt Orlin’s Max Flow algorithm 

• Would get O(n5)

• Adapt Feder’s technique

Max Flows in O(nm) Time, or 
Better; Association for Computing 
Machinery; 2013; Orlin

A new fixed point approach for 
stable networks and stable 
marriages; Journal of Computer 
and System Sciences; 1992; Feder

improvement 
automatically available in 

the exponential case



Frances Cooper

Future Work

!27

• Adapt Orlin’s Max Flow algorithm 

• Would get O(n5)

• Adapt Feder’s technique

• Based on weighted SAT

Max Flows in O(nm) Time, or 
Better; Association for Computing 
Machinery; 2013; Orlin

A new fixed point approach for 
stable networks and stable 
marriages; Journal of Computer 
and System Sciences; 1992; Feder

improvement 
automatically available in 

the exponential case



Frances Cooper

Future Work

!27

• Adapt Orlin’s Max Flow algorithm 

• Would get O(n5)

• Adapt Feder’s technique

• Based on weighted SAT

• Would get O(n4.5)

Max Flows in O(nm) Time, or 
Better; Association for Computing 
Machinery; 2013; Orlin

A new fixed point approach for 
stable networks and stable 
marriages; Journal of Computer 
and System Sciences; 1992; Feder

improvement 
automatically available in 

the exponential case
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Thank you

Summary


• Matching problems


• Fairness


• Finding fair stable matchings


• Experiments


• Future work: adapting algorithms to 
vector-based setting for improved time 
complexity
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