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Two Algorithms for the Student Project 
Allocation Problem; Journal of Discrete 
Algorithms; 2007; Abraham, Irving, Manlove

!7

• A stable matching is a matching with no blocking pairs

• No ties in preference lists - find a stable matching in 
polynomial time - all same size

• Ties in preference lists - find a stable matching in 
polynomial time - but stable matchings are different 
sizes

• Finding a maximum sized stable matching is NP-hard. 
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• Hospitals/Residents with Ties (HRT) - special case of SPA-ST, 
each lecturer offers one project and the capacity of each 
lecturer equals the capacity of their offered project

• A 3/2-approximation algorithm exists for HRT

• Can I just convert my problem and use this algorithm?

• Not using a conversion process we tried. Linear Time Local 
Approximation Algorithm for 
Maximum Stable Marriage; 
Algorithms; 2013; Kiraly
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3/2-approximation algorithm

• Created a new 3/2 approximation algorithm for SPA-ST, 
based on Kiraly’s HRT algorithm.

• Moving from HRT to SPA-ST

• Lecturers added a lot of complications

• Definition of a blocking pair is more complicated
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high-level look

Students (who are not already assigned) apply in turn to their 
favourite project on their preference list. Assume student s applies to 
project p.

• if p and l (the lecturer of p) are undersubscribed then we add (s,p) to 
our matching

• if either p or l are full then we need to check whether (s,p) should 
replace an existing pair in the matching

• if there is no chance for s to assign to p then s will remove p from 
their preference list (and will now apply to their next favourite)

• Students iterate twice through their preference list

!12
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Proofs
Three proofs required:

• the algorithm runs in linear time

• the resultant matching is stable

• the matching is at least 2/3 the size of optimal
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Integer Programming

• gives an optimal solution

• novel work: stability constraints

• helped in correctness checking

• gives motivation for using approximation algorithm
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• Java (and Gurobi), 100s of thousands of instances with varying 
parameters. Ran on approximation algorithm and integer program.

• Does the approximation algorithm stick to 2/3 the size of optimal? 
Or do we get close to maximum?

Experimental Results

!20

• TIES - 10,000 instances per set, 300 
students, 250 projects (capacity 
420), 120 lecturers (capacity 360), 
pref lists length 3 to 5. 

• increasing prob of student and 
lecturer ties from 0 to 0.5 in 0.05 
steps

• Average approx solution closer to 
optimal than minimum in all cases
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Scalability

• SCALS - 10,000 students up 
to 50,000 students. Pref lists 
3 to 5 and ties 0.2

• SCALP - 500 students, ties 
0.4, Pref lists increased from 
25 to 150 in steps of 25.

• much faster than using the 
integer program
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• So is it worth using?

• Coram - assigning adopted children to families. ~ 100’s 
of agents. Preference lists long and probability of ties 
high

• 21 instances, increasing difficulty. Initial IP could only 
solve first 6 within 5 minutes, approximation algorithm 
took less than 2 seconds for each

Experimental Results
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Future Work
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• Finding an approximation algorithm with a better 
performance guarantee than 3/2

• Finding a better inapproximability result than 33/29

• coalitions: 

• group of several students and lecturers

• permute their assignments

• some or all get a better outcome

Approximation Algorithms for Stable 
Matching Problems; PhD thesis; 2007; H. 
Yanagisawa
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Thank you
Summary


• Student-project allocation problem


• Finding a maximum stable matching


• Integer programming


• Approximation algorithm


• Future work: improved performance 
guarantee; improved inapproximability 
result; coalitions

!24

f.cooper.1@research.gla.ac.uk 
http://fmcooper.github.io

EPSRC Doctoral Training Account


